

Answer any TWO questions.
( $2 \times 20=40$ Marks)

| 19 | (a) | Prove that a connected graph $G$ is an Euler graph iff all vertices of $G$ are of even <br> degree. | $(10)$ |
| :---: | :--- | :--- | :---: |
|  | (b) | Show that a simple graph with $n$ vertices and $k$ components can have at most <br> $\frac{(n-k)(n-k+1)}{2}$ edges. | $(10)$ |
| 20 | (a) | Prove that every tree has either one or two centers. | $(10)$ |
|  | (b) | If $n$ is an odd number and $n \geq 3$, prove that in a complete graph with $n$ vertices there <br> are $(n-1) / 2$ edge-disjoint Hamiltonian circuits. | $(10)$ |
| 21 | (a) | Prove that the ring sum of any two cut-sets in a graph is either a third cut-set or an <br> edge disjoint union of cut-sets. | $(10)$ |
| 22 | (b) | Prove that a connected planar graph with $n$ vertices and $e$ edges has $e-n+2$ regions. | Explain the digraph and write down the advantages and disadvantages over an <br> undirected graph. |
|  | (b) | Show that a graph with at least one edge is 2-chromatic if and only if it has no circuits <br> of odd length. | $(10)$ |

